Some structure theorems for RO(G)-graded cohomology

Clover May UCLA

November 15, 2018

RO(G)-graded cohomology

G - finite group

- G-CW complex: attach orbit cells $G/K \times D^n$, for $K \leq G$
- Bredon cohomology $H_G^*(-)$
- coefficient system $H_G^*(G/K) \longrightarrow H_G^*(G/J)$

$$S^V = \widehat{V}$$
 one-point compactification

$$\Sigma^{V}X = S^{V} \wedge X$$

 RO(G) = Grothendieck group of finite-dimensional real orthogonal representations

RO(G)-graded cohomology

Theorem (Lewis, May, McClure, 1981)

The ordinary \mathbb{Z} -graded theory $H_G^*(-; M)$ with coefficients in a coefficient system M extends to an RO(G)-graded theory iff M extends to a Mackey functor.

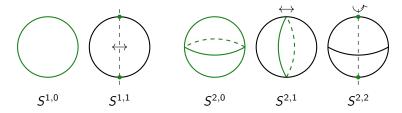
$$H_G^*(G/K) \xrightarrow{\swarrow} H_G^*(G/J)$$

- For $\alpha \in RO(G)$ any virtual representation and M a Mackey functor, get $H_G^{\alpha}(-; M)$
- Suspension isomorphism $\tilde{H}_G^{\alpha}(X;M) \cong \tilde{H}_G^{\alpha+V}(\Sigma^V X;M)$

$RO(C_2)$ -graded cohomology

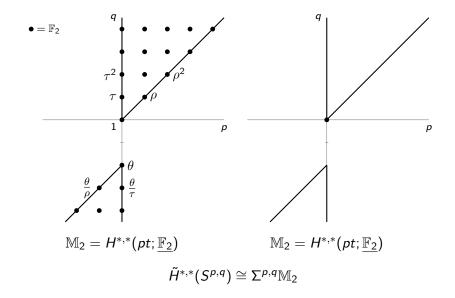
$$G=C_2$$

- Two orbits: $pt = C_2/C_2$ and $C_2 = C_2/e$
- ullet Representations $V=\mathbb{R}^{p,q}=(\mathbb{R}_{ extit{triv}})^{p-q}\oplus(\mathbb{R}_{ extit{sgn}})^q$
- Representation spheres $S^V = S^{p,q}$



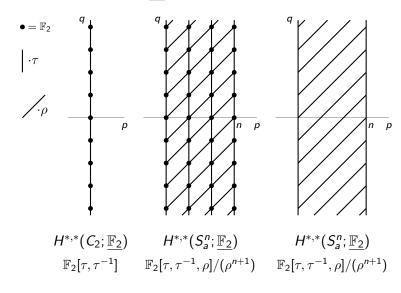
- ullet Coefficients in the constant Mackey functor: $\underline{\mathbb{F}_2}$
- Write $H_G^V(X; \underline{\mathbb{F}_2}) = H^{p,q}(X; \underline{\mathbb{F}_2}) = H^{p,q}(X)$

Cohomology of a point

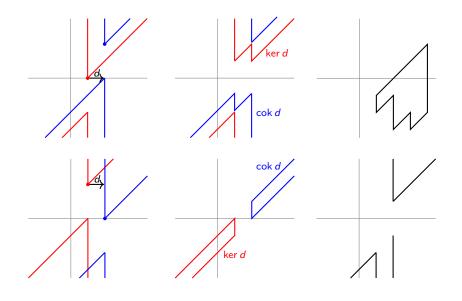


Examples

For any X, $H^{*,*}(X; \underline{\mathbb{F}_2})$ is an \mathbb{M}_2 -module via $X \to pt$



Some \mathbb{M}_2 -modules



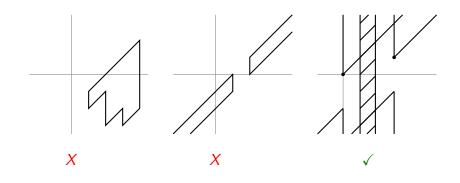
Torus examples

Cohomologies of C_2 -actions on a torus with $\mathbb{F}_2\text{-coefficients}$

Structure theorem

Theorem (M, 2018)

If X is a finite C_2 -CW complex then $H^{*,*}(X; \underline{\mathbb{F}_2})$ is a direct sum of shifted copies of $\mathbb{M}_2 = H^{*,*}(pt; \underline{\mathbb{F}_2})$ and $H^{*,*}(S_a^n; \underline{\mathbb{F}_2})$.



Structure theorem

Theorem (M, 2018)

Let X be a finite C_2 -CW complex. There is a decomposition of $H^{*,*}(X; \underline{\mathbb{F}_2})$ as a module over $\mathbb{M}_2 = H^{*,*}(pt; \underline{\mathbb{F}_2})$

$$H^{*,*}(X; \underline{\mathbb{F}_2}) \cong (\bigoplus_i \Sigma^{p_i,q_i} \mathbb{M}_2) \oplus (\bigoplus_j \Sigma^{r_j,0} H^{*,*}(S^{n_j}_a))$$

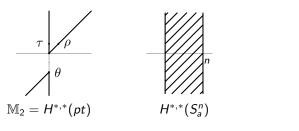
where \mathbb{R}^{p_i,q_i} and $\mathbb{R}^{r_j,0}$ are elements of $RO(C_2)$ corresponding to actual representations.

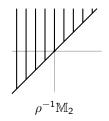
Corollary

Let X be a finite C_2 -CW spectrum. There is a weak equivalence of genuine C_2 -spectra

$$X_{+} \wedge H\underline{\mathbb{F}_{2}} \simeq \bigvee_{i} \left(S^{p_{i},q_{i}} \wedge H\underline{\mathbb{F}_{2}} \right) \vee \bigvee_{j} \left(S^{r_{j},0} \wedge S^{n_{j}}_{a} + \wedge H\underline{\mathbb{F}_{2}} \right)$$

Ingredients for the proof





- If $x \in H^{*,*}(X)$ and $\theta x \neq 0$ then $\mathbb{M}_2\langle x \rangle \hookrightarrow H^{*,*}(X)$.
- M₂ is self-injective
- ullet 0 $o \oplus_i \Sigma^{p_i,q_i} \mathbb{M}_2 o H^{*,*}(X) o Q o 0$
- For a finite C2-CW complex

$$\rho^{-1}H^{*,*}(X) \cong H^*_{sing}(X^{C_2}; \mathbb{F}_2) \otimes \rho^{-1}\mathbb{M}_2$$

•
$$\langle \tau, \theta, \rho \rangle = 1$$

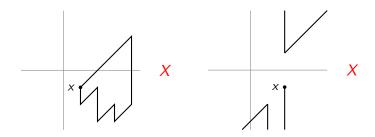
Toda bracket

Use $\langle \tau, \theta, \rho \rangle = 1$ to exclude many \mathbb{M}_2 -modules.

Lemma

If $x \in H^{*,*}(X)$ and $\tau x = 0$ then $x = \rho y$ for some $y \in H^{*,*}(X)$.

Follows from $x = x \cdot \langle \tau, \theta, \rho \rangle = \langle x, \tau, \theta \rangle \cdot \rho$



Use several similar results to show Q is a $\mathbb{F}_2[\tau, \tau^{-1}, \rho]$ -module.

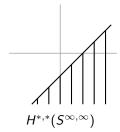
Finiteness required

Would want to extend to locally finite C_2 -CW complexes:

$$H^{*,*}(S_a^n) \cong \mathbb{F}_2[\tau, \tau^{-1}, \rho]/(\rho^{n+1})$$
$$H^{*,*}(S_a^\infty) \cong \mathbb{F}_2[\tau, \tau^{-1}, \rho]$$

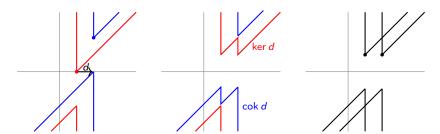
Counterexample

$$S^{\infty,\infty} = \operatorname{colim}(S^{0,0} \xrightarrow{\rho} S^{1,1} \xrightarrow{\rho} S^{2,2} \xrightarrow{\rho} \cdots \rightarrow S^{n,n} \rightarrow \cdots)$$



Application of theorem to $\mathbb{R}P_{tw}^2$

- Consider $\mathbb{R}P_{tw}^2$
- ullet Cofiber sequence $S^{1,0}\hookrightarrow \mathbb{R}P^2_{tw} o S^{2,2}$
- Long exact sequence in $\tilde{H}^{*,*}(-)$
- Extension problem $0 o \operatorname{cok} d o \tilde{H}^{*,*}(\mathbb{R}P^2_{tw}) o \ker d o 0$



Freeness Theorems

- G-CW complex: attach orbit cells $G/K \times D^n$
- Rep(G)-complex: attach representation cells D(V)

e.g. Grassmannian $Gr_k(\mathbb{R}^{p,q})$

Theorem (Kronholm, 2010)

If X is a finite Rep(C_2)-complex, $H^{*,*}(X)$ is a free \mathbb{M}_2 -module.

Theorem (Ferland, 1999)

If X is a finite $Rep(C_p)$ -complex for p odd and X has only even dimensional cells, then $H_G^*(X)$ is a free $H_G^*(pt)$ -module (with coefficients in $\mathcal A$ or $\underline{\mathbb Z}$).

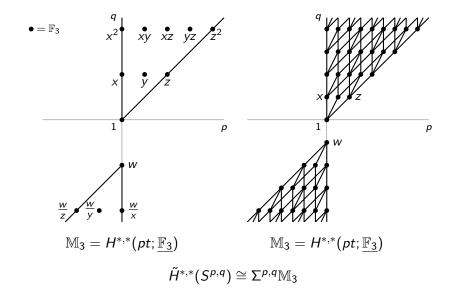
$RO(C_3)$ -graded cohomology

$$G=C_3$$

- Two orbits: $pt = C_3/C_3$ and $C_3 = C_3/e$
- Representations $V = \mathbb{R}^{p,q} = (\mathbb{R}_{triv})^{p-q} \oplus (\mathbb{R}^2_{rot})^{q/2}$
- Representation spheres $S^V = S^{p,q}$

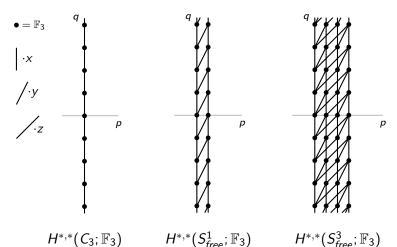
- \bullet Coefficients in the constant Mackey functor: $\underline{\mathbb{F}_3}$
- Write $H_G^V(X; \mathbb{F}_3) = H^{p,q}(X; \mathbb{F}_3)$ for q = even

Cohomology of a point



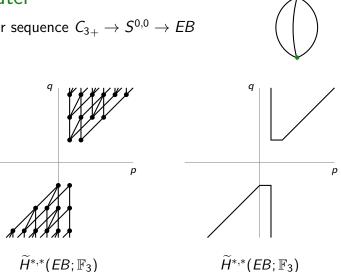
Examples

For any X, $H^{*,*}(X;\mathbb{F}_3)$ is an \mathbb{M}_3 -module via $X \to pt$



Egg-beater

Cofiber sequence $C_{3+} \rightarrow S^{0,0} \rightarrow EB$



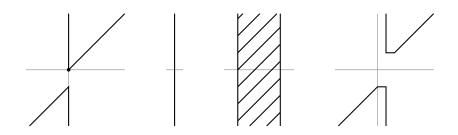
For
$$G=C_2$$
 this cofiber sequence is $C_{2+} o S^{0,0} o S^{1,1}$

Structure theorem

"Theorem" (M, in progress)

If X is a finite C_3 -CW complex then $H^{*,*}(X; \underline{\mathbb{F}_3})$ is a direct sum of shifted copies of:

$$\mathbb{M}_3 = H^{*,*}(pt), \quad H^{*,*}(C_3), \quad H^{*,*}(S^{2n+1}_{free}), \quad and \ \widetilde{H}^{*,*}(EB).$$

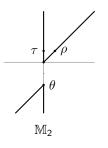


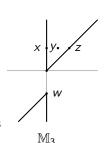
C₂ structure theorem:

- θ detects \mathbb{M}_2
- M₂ is self-injective
- ρ -localization: for finite C_2 -CW complexes $\rho^{-1}H^{*,*}(X; \mathbb{F}_2) \cong H^*_{sing}(X^{C_2}; \mathbb{F}_2) \otimes \rho^{-1}\mathbb{M}_2$
- $\langle \tau, \theta, \rho \rangle = 1$

C₃ structure theorem:

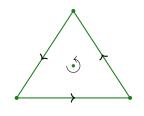
- w detects M₃
- M₃ is self-injective
- z-localization: for finite C_3 -CW complexes $z^{-1}H^{*,*}(X;\underline{\mathbb{F}_3})\cong H^*_{sing}(X^{C_3};\mathbb{F}_3)\otimes z^{-1}\mathbb{M}_3$
- $\langle x, \frac{w}{v}, z \rangle = 1$

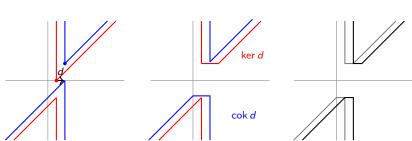




An analogue of $\mathbb{R}P_{tw}^2$

- Consider Y
- ullet Cofiber sequence $S^{1,0}\hookrightarrow Y\to S^{2,2}$
- Long exact sequence in $\tilde{H}^{*,*}(-)$
- Extension problem $0 o \operatorname{cok} d o \tilde{H}^{*,*}(Y) o \ker d o 0$





Thank you!